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ABSTRACT 

This paper explores the accuracy of a planar, impulse-
momentum impact model in representing the dynamics 
of three vehicle-to-ground impacts that occurred during a 
SAE J2114 dolly rollover test. The impacts were 
analyzed, first, using video analysis techniques to obtain 
the actual velocity conditions, accelerations, impact force 
components and the energy loss for each of the impacts. 
Next, these same impacts were analyzed using the 
known initial velocity conditions and the subject impact 
model. The equations of this impact model yielded 
calculated values for the velocity changes and energy 
loss for each impact. These calculated results were then 
compared to the actual dynamics data from the video 
analysis of the impacts to determine the accuracy of the 
impact model results. For all three vehicle-to-ground 
impacts considered in this study, the impact model 
results for the velocity changes and energy loss showed 
excellent agreement with the video analysis results for 
these parameters. These results suggest that it is 
reasonable to use this impact model to examine the 
influence of various factors on rollover dynamics. 
 
INTRODUCTION 

This paper explores the accuracy of a planar, impulse-
momentum impact model in representing the dynamics 
of three vehicle-to-ground impacts that occurred during a 
SAE J2114 dolly rollover test [6, 8]. The paper begins by 
introducing the equations of that impact model and then 
discusses video analysis of the three vehicle-to-ground 
impacts that will be considered in the paper. This video 
analysis yielded the actual initial velocity conditions, 
velocity changes and the energy loss for each of the 
impacts. After discussing these video analysis results, 
the equations of the impact model are used, in 

conjunction with the known initial velocity conditions, to 
obtain calculated velocity changes and energy loss for 
each of the three vehicle-to-ground impacts. These 
calculated values are then compared to the known 
values of these parameters from the video analysis. The 
accuracy of the impact model is explored and guidance 
is given for selecting impact model parameters that 
maximize that accuracy.  
 
The equations of the impact model used in this paper 
were introduced in Reference 17 and they are given a 
fuller treatment in Reference 19. For convenience, these 
equations are repeated in this paper and their derivation 
is given in Appendix A. This impact model represents a 
relatively straightforward application of the principle of 
impulse and momentum with the exception that the 
effects of the gravity impulse are included in the 
equations. Our main purpose in using this simple, planar 
impact model was to determine whether such a model 
could be used to explore the influence certain factors will 
have on rollover dynamics. For instance, could such a 
model illuminate the factors that influence a vehicle’s 
deceleration rate during a rollover or those factors that 
determine the number of rolls a vehicle will experience 
during a rollover? These parameter influences are likely 
to be more visible in a simple, planar impact model than 
they would be in a fully three-dimensional impact model 
such as those used in certain accident simulation 
software packages. In using the impact model of this 
paper to illuminate such factor influences, it would, of 
course, be beneficial to know the degree to which the 
results from that model will have actual relevance to 
real-world rollover dynamics, which are, in general, 
highly three-dimensional. That is the issue that this 
paper aims at addressing. 
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There are, of course, computer software packages with 
the capability of analyzing vehicle-to-ground impacts in 
three-dimensions and there will clearly be vehicle-to-
ground impacts that occur during rollovers for which 
such three-dimensional analysis will be essential [5, 7, 
21]. Nonetheless, the research reported in this paper 
does show that, at least for the three vehicle-to-ground 
impacts reported here, a simple, planar impulse-
momentum impact model can yield reasonably accurate 
velocity changes and energy loss for a vehicle-to-ground 
impact. 
 
VEHICLE-TO-GROUND IMPACT MODEL 
 
Figure 1 depicts an idealized impact between a vehicle 
and the ground. The impact shown here is a trailing side 
roof impact for a passenger’s side leading roll. This 
image shows the coordinate system orientation and the 
parameters with which the impact model equations were 
developed. The impact radius, which is the distance from 
the vehicle center-of-mass to the contact point C, is 
designated with the symbol r. The impact angle, which is 
the angle between the ground plane and the impact 
radius, is designated with the symbol φ. The vehicle’s 
velocity vector is designated with the letter v and the 
vehicle’s roll velocity is designated ωr.  
 

 
Figure 1 – Free-Body Diagram for a Vehicle-to-

Ground Impact 
 
During the depicted impact, the vehicle is subjected to 
both upward and ground surface impact force 
components, Fvertical and Fground, and the gravity force, 
which is the vehicle’s weight. In general, Fground can act 
in either the positive (left) or negative (right) direction. 
On the other hand, Fvertical will always act in the positive-z 
direction and the gravity force will always act in the 
negative-z direction. 
 
 
 

IMPACT MODEL ASSUMPTIONS 
 
Before discussing the equations that will yield the 
velocity changes and energy loss for the impact of 
Figure 1, consider the assumptions that the mathematics 
of those equations will invoke. These assumptions 
include the following: 
 
1. The impact will be assumed to occur entirely in a 

single plane, and thus, velocity changes along the 
vehicle’s longitudinal axis are neglected, as are 
changes in pitch and yaw velocity.  

 
2. The impact model equations will recognize no 

change in the position of the vehicle through the 
impact.  

 
3. The impact force will be assumed to be 

concentrated at a single point. 
 
4. It has been assumed that no moment arises at the 

contact point. 
 
5. Any effects of ground plane restitution have been 

neglected. In other words, the ground surface impact 
force has been assumed to be a retarding force that 
depends on relative velocity at the contact point for 
its development. It is assumed that there is no 
structural restitution that could potentially cause a 
velocity reversal in the contact region. 

 
The meaning of the first three of these assumptions 
should be relatively clear. We suspect that the meaning 
of the last two will be less clear, and thus, we refer the 
reader to the extensive discussion of these concepts in 
the text by Brach, titled Mechanical Impact Dynamics [2]. 
Relaxing these last two assumptions is possible. 
However, in our judgment, this would make the modeling 
reported in this paper needlessly complex.  
 
All five of these assumptions have the potential to be 
violated during any particular vehicle-to-ground impact. 
The degree to which any one of them is an appropriate 
assumption will depend on the specifics of the particular 
vehicle-to-ground impact under consideration and on the 
degree to which violating any of these assumptions will 
actually degrade the accuracy of the results the impact 
model yields. That issue will be addressed in the 
“Discussion” section of this paper. 
 
IMPACT MODEL EQUATIONS 
 
Once these assumptions are invoked, application of the 
principle of impulse and momentum results in Equations 
(1) through (3), which yield the vehicle’s upward and 
ground plane center-of-mass (CoM) velocity changes 
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and the vehicle’s change in roll velocity.1 Appendix A 
contains a full derivation of these equations. In these 
equations, vzc,i is the vertical velocity of the vehicle at 
Point C immediately preceding the ground contact, kr is 
the vehicle’s radius of gyration for the roll axis, g is the 
gravitational constant, Δti is the duration of the impact, 
and the letters s and c designate the sine and cosine. 
Note that although it is assumed that the vehicle position 
does not change during the impact, accounting for the 
effect of the gravity impulse has required inclusion of the 
impact duration [9]. 
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Examination of Equations (1) through (3) reveals that the 
initial downward velocity at the Point C (vzc,i) directly 
influences the velocity changes that occur during the 
impact, with the velocity changes increasing as this 
velocity increases. This initial vertical velocity at Point C, 
which is given by the following equation, is related to the 
vehicle’s CoM vertical velocity, its roll velocity and the 
impact angle and radius:  

 

irizizc crvv ,,, ωφ ⋅⋅−=  

 
In this equation, vzi is the vehicle’s vertical velocity at its 
CoM immediately preceding the impact. 
 
Equations (1) through (3) also include the coefficient of 
restitution, e, and the impulse ratio, μ. The coefficient of 
restitution is the negative ratio of the post-impact to the 
pre-impact vertical velocity at Point C. The impulse ratio 
is the ratio of the ground surface collision impulse to the 
vertical direction collision impulse. In some instances, 
the impulse ratio can be thought of as a coulomb friction 
value, though its application is not limited to this 
interpretation [2, 3, 4, 14, 19]. In addition to the effects of 
friction between the ground and the vehicle body, the 
ground plane impulse may also include the effects of 
forces generated by snagging between the vehicle and 
the ground. When such snagging occurs, the impulse 

                                                 
1 The authors presented these equations in Reference 17. However, in 
that reference, Equation (2) failed to include the gravity term. 

ratio should be set at a value that incorporates that 
snagging. 
 
Within this impact model, the sign of the impulse ratio 
governs the direction in which the ground plane collision 
force acts. A positive impulse ratio produces a ground 
plane force that acts in the positive direction and a 
negative impulse ratio results in a ground plane force 
that acts in the negative direction. The direction of the 
ground surface impact force, in turn, determines whether 
the vehicle will experience a positive or negative ground 
plane velocity change and whether the ground surface 
impact force will tend to increase or decrease the roll 
velocity. Also, note that for a passenger’s side leading 
roll, as depicted in the image above, the ground speed 
will be negative, the roll velocity positive, and the impact 
angle will always be less than 90 degrees. For a driver’s 
side leading roll, like the crash test analyzed in this 
paper, the same impact model equations apply, but the 
ground speed will be positive, the roll velocity negative 
and the impact angle will always be greater than 90 
degrees. 
 
The energy loss that occurs during the vehicle-to-ground 
impact of Figure 1 can be written as follows: 
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The energy loss of Equation (5) includes the energy loss 
due to vehicle deformation, ground deformation, and 
sliding, snagging or furrowing between the vehicle 
structure and the ground. 

ROLLOVER CRASH TEST SETUP 

 
Figure 1 – Rollover Crash Test Configuration 

The rollover crash test used in this paper was run with a 
Ford sport utility vehicle in accordance with the SAE 
Recommended Practice J2114 (Dolly Rollover). This test 
procedure involves generating a lateral roll of the test 
vehicle by accelerating a cart, on which the vehicle sits, 
up to the test speed, then decelerating that cart at a 

(1)

(2)

(3)

(4)

(5)
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sufficient rate to initiate the rollover. The vehicle is 
situated on the cart perpendicular to the initial velocity 
direction with an initial roll angle of 23 degrees. In the 
test under consideration in this paper, the vehicle was 
situated on the cart with its driver’s side leading and the 
cart and test vehicle were accelerated up to a speed of 
approximately 31 mph before the cart deceleration was 
initiated. Figure 1 shows the test vehicle just before it 
began exiting the cart. 

 
Figure 2 – Rollover Crash Test Dynamics 

 
The roll dynamics that occurred during this test are 
depicted in Figure 2. The images in this figure were 
captured by a high-speed camera located downstream 
of the roll. As these images show, the vehicle rolled just 
past 360 degrees and then came down to rest on its 
wheels. During this test, the vehicle was instrumented 
with sensors to measure the vehicle-fixed longitudinal, 
lateral and vertical accelerations at the center tunnel 
between the seats and the lateral and vertical 

accelerations at the lower A-pillar and B-pillar on both 
sides of the vehicle. The vehicle was also instrumented 
with two rotation rate sensors for each principal axis. 
These were mounted on the center tunnel just rearward 
of the seats. Nine high-speed fixed cameras and one 
real-time panning camera recorded the test. The high-
speed video was taken at 500 frames per second and 
the real-time video was taken at the NTSC standard 
frame rate of 29.97 frames per second. 

Three-dimensional dynamics data for this crash test was 
obtained using video analysis that is described in detail 
in a companion paper [20]. That analysis will also be 
covered briefly in the next two sections.  

CAMERA-MATCHING VIDEO ANALYSIS 

This section describes the methodology utilized to track 
the vehicle motion in the crash test video. This 
methodology consisted of the following steps: 1) 
preparing the test vehicle with targets that would be 
tracked; 2) surveying the test facility and vehicle 
geometries; 3) creating a computer environment that 
included the geometries of the test facility and the test 
vehicle; 4) analyzing the actual cameras and the video 
images to determine characteristics, distortion and 
resolution so that these could be replicated with 
computer-modeled cameras; 5) accurately placing 
computer-modeled cameras in a three-dimensional 
computer environment and matching them to the test 
video; and 6) tracking the movement of the test vehicle 
by matching the location of the computer generated 
vehicle targets to the targets on the test vehicle for each 
frame of the video sequence. These steps are more fully 
described in the following paragraphs. 

1) Prior to running the crash test, the test vehicle was 
marked with high-contrast yellow and black fiducial 
targets. It was the motion of these targets that was 
ultimately tracked in the video. In placing these 
targets, the primary goal was to generate a wide 
range of points on the vehicle that would be visible 
and identifiable in the crash test video.  

2) Once these stickers were placed, their locations 
were surveyed so that they could be replicated on a 
computer-generated model of the test vehicle. Also 
prior to running the crash test, a survey of the test 
facility was completed. This survey provided the 
three-dimensional geometry of the rollover test 
facility, including the ground surface, the control 
joints in the concrete of the test surface, the walls 
surrounding the test surface, and the light fixtures 
located above the test surface. 

3) Based on survey data and photographs, computer-
generated models of the test facility and test vehicle 
were constructed. The entire computer environment 
was then oriented relative to the general roll 
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direction. With the survey of the test vehicle aligned 
to the computer model, the target stickers that were 
placed on the test vehicle, and subsequently 
surveyed, could be transferred to identical locations 
on the computer model of the vehicle. These target 
locations were used to track the motion of the test 
vehicle. 

4) The optical and geometric characteristics of all the 
cameras were documented and analyzed in order to 
create computer-generated cameras that mimicked 
each individual camera that captured video of the 
rollover test. The data for these cameras came from 
the survey of these cameras, analysis of the 
sensors, and analysis of the technical and 
specification drawings. Each camera was created 
according to its specific characteristics, since these 
characteristics differed between cameras. These 
computer-modeled cameras were also located and 
oriented to be identical to the cameras surveyed at 
the facility at the time the dolly rollover test was 
conducted. 

5) Having created a computer-modeled environment 
that contained the geometry of the test facility, the 
test vehicle and a series of computer-modeled 
cameras that replicate the actual cameras, test 
video from each camera was then designated as a 
background image for its corresponding computer-
modeled camera. Each computer-modeled camera 
could then be used to simultaneously view the 
computer model of the test facility and the crash test 

video. If the location and characteristics of each 
camera were set properly, then this step would yield 
an overlay between the video background and the 
computer-modeled environment. Crash test facility 
features visible in computer model should overlay 
those same features visible in the crash test video. 
Figure 3 depicts this process of camera-matching 
the computer-modeled cameras to the video of the 
rollover test. This step was repeated for each 
camera position and video sequence, such that all 
cameras and computer geometry were visually 
determined to be matched to their background video 
sequence.  

6) With this determination, the computer model of the 
test vehicle could then be placed in the computer-
modeled environment and positioned at each frame 
to mimic the movements of the vehicle visible in 
each frame of the video sequence. The images in 
Figure 4 depict a properly matched computer model 
of the vehicle and facility for several frames of the 
video. The mesh model of the vehicle contains 
yellow dots as seen in the video image overlay. 
These yellow dots are the surveyed points of the test 
vehicle before it was damaged from the rollover. It 
can be seen in Figure 4 that these images match 
with all the corresponding targets that were placed 
on the test vehicle. In addition to the vehicle 
matching the video, the computer model of the 
environment and background can also be seen in 
this image properly oriented and positioned relative 
to the same background and environment of the 
facility seen in the video. 

 
 
 
 
 
 

 
Figure 3 – Camera-Matching Process 
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Figure 4 – Images from Camera-Matching Video Analysis 

 
 

MOTION ANALYSIS 

The video analysis described in the previous section 
yielded the earth-fixed x, y, and z coordinates of the 
vehicle CoM and the yaw, pitch and roll angles of the 
vehicle at 10 millisecond intervals throughout the first 2 
seconds of the test. For the analysis presented here, the 
earth-fixed coordinate system was setup with the x- 
direction running along the initial travel direction of the 
rollover dolly and the test vehicle. The y-direction was 
oriented along the initial heading direction of the vehicle 
and the z-axis was oriented upward. 

Once the vehicle’s positions and orientations were 
obtained, they were used to calculate the velocities for 
the vehicle during the test. For instance, the following 
centered difference equation was used to obtain the 
vehicle’s ground plane velocity throughout the test [11]: 

( ) ( )
t

yyxx
v tttttttt

yx Δ
−+−

= Δ−Δ+Δ−Δ+
− 2

22

 

In this equation, x and y refer to the x and y coordinates 
of the vehicle’s CoM, the subscripts t+Δt and t-Δt 
reference these coordinate values from time steps 
surrounding the time step of interest, and Δt is the 
duration of each time step. 

Overall, it was found that the motion of the vehicle in the 
y-direction was negligible, such that the velocity of the 
vehicle in the x-direction (along the rollover track) was 
nearly identical in magnitude to the overall translational 
speed of the vehicle given by Equation (6). This x-

direction velocity was obtained with the following 
equation: 

t
xxv tttt

x Δ
−

= Δ−Δ+

2
 

Similarly, the following centered difference equation was 
used to obtain the vehicle’s vertical velocity throughout 
the test: 

t
zzv tttt

z Δ
−

= Δ−Δ+

2
 

In this equation, z refers to the z-coordinate of the 
vehicle’s CoM. 

In general, the accuracy and precision of the velocities 
calculated with Equations (6), (7) and (8) will depend on 
the magnitude of the measurement uncertainties in the 
positional coordinates and on the time step used for the 
calculation. On the one hand, if too small a time step is 
used, the velocity calculations will be excessively 
sensitive to any measurement errors and will exhibit 
excessive uncertainty. On the other hand, if too large a 
time step is used, the velocity curves will suffer from 
over-smoothing error and the velocity peaks could be 
truncated. 

To explore the degree to which measurement errors 
might affect the accuracy and the precision of the 
velocities calculated with Equations (7) and (8), the 
authors had a second analyst use the previously 
described camera-matching video analysis technique to 
obtain a second set of motion for the vehicle in the first 

(6)

(8)

(7)
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two seconds of the test, at time increments of 30 
milliseconds. The positions and orientations of the 
vehicle obtained with this second analysis were then 
compared to the positions and orientations of the vehicle 
obtained by the first analyst. Overall, the two sets of 
motion data had an average difference in the x-
coordinate of 0.35 inches, with a standard deviation of 
0.36 inches, and an average difference in the z-
coordinate of 0.42 inches, with a standard deviation of 
0.28 inches. Thus, 84% of the time, the difference 
between the two analysts’ positions was less than 0.71 
inches. At least 96% of the time, the difference between 
the two analysts’ positions was less than 1.0 inch. 

Using differential calculus to perform an error analysis 
[22], it can be shown that the uncertainty in the velocities 
of Equations (7) and (8) can be estimated with the 
following equations: 

t
xvx
Δ⋅

=
2
δδ  

t
zvz
Δ⋅

=
2
δδ  

In these equations, δx and δz are the positional 
uncertainties in the x and z coordinate directions and δvx 
and δvz are the velocity uncertainties in these same 
directions. In formulating Equations (9) and (10), it has 
been assumed that the potential measurement error at 
each time step is independent of those at the 
surrounding time steps. 

Assuming that the differences between the two analysts 
reported above give us a reasonable estimate of the 
uncertainty in the positional coordinates obtained with 
the camera-matching technique, Figure 5 graphically 
represents the uncertainty in the translational velocities 
for time steps varying between 10 and 50 milliseconds.  

 
Figure 5 – Velocity Uncertainties 

 

Figure 5 contains curves for an 84% confidence interval 
and a 96% confidence interval. As one would expect, the 
uncertainty in the velocities due to potential 
measurement errors decrease as the time step 
increases. A time step of 40 milliseconds produced an 
uncertainty of 0.71 mph in the ground plane and vertical 
speeds with a confidence of 84% and 1 mph with a 
confidence of 96%. 

Figures 6 and 7 depict the vehicle’s ground speed and 
vertical speed for the first 2000 milliseconds of the test, 
calculated with Equations (7) and (8) and with time steps 
varying between 10 and 40 milliseconds. 

 
Figure 6 – Vehicle Translational Speed 

 

 
Figure 7 – Vehicle Vertical Speed 

 
Examination of Figure 6 reveals that, with the exception 
of several small time segments, varying the time step 
between 10 and 40 milliseconds made little difference to 
the ground speed that was calculated with Equation (7). 
Examination of Figure 7 reveals that, for most time 
segments, varying the time step between 20 and 40 
milliseconds made little difference to the vertical velocity 
that was calculated. At a time step of 10 milliseconds, 
the vertical velocity curve exhibits quite a bit of 
jumpiness that likely indicates this time step produces 
excessive sensitivity to measurement errors in the z-

(9)

(10)
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coordinate. In addition to this, the time step does have 
some effect on the peaks achieved by the vertical 
velocity curve, with the magnitude of the peaks being 
diminished as the time step increases.  

Overall, for the velocity calculations, a time step of 40 
milliseconds appeared to be a reasonable compromise 
between the effects of potential measurement errors and 
over-smoothing effects. Though the peaks of the vertical 
velocity curve with this time step may experience some 
truncation due to over-smoothing, this effect does not 
appear excessive. 

Now, consider the vertical velocities of Figure 7 relative 
to what was physically occurring when the vehicle had 
these velocities. This graph shows that, as it exits the 
dolly and drops to the ground, the vehicle develops a 
downward velocity around 3-½ mph by the time the 
wheels impact the ground. As a result of the wheels 
impacting the ground, the vehicle then develops an 
upward velocity around 3-½ mph. The vehicle then falls 
again and at the time the leading side roof rail contact 
the ground the vehicle has a downward center of mass 
velocity around 2-½ mph. The upward velocity change 
from this first roof impact gives the vehicle an upward 
velocity of 1 mph. By the time the trailing side roof 
impact the ground, the vehicle has developed a 
downward velocity of around 2-½ mph. The vehicle 
rebounds out of this second roof contact with a vertical 
velocity around 2 mph. 

After calculating the vehicle’s translational velocities, the 
following centered difference equation yielded the 
vehicle’s ground plane acceleration throughout the test: 

t
vv

a ttxttx
x Δ

−
= Δ−Δ+

2
,,

 

Similarly, the following centered difference equation 
yielded the vehicle’s vertical acceleration throughout the 
test: 

t
vv

a ttzttz
z Δ

−
= Δ−Δ+

2
,,

 

The following equation yielded the vehicle’s resultant 
acceleration.  

22
zxres aaa +=  

Figure 8 compares the resultant accelerations calculated 
with Equations (11) through (13), with varying time 
steps, to those obtained from sensor data. The sensor 
data was first filtered with a CFC 60 filter. With a time 
step of 20 milliseconds, Equations (11) through (13) 
appear to produce a rather erratic acceleration curve 

that potentially exhibits excessive noise due to 
measurement errors. However, at higher time steps the 
acceleration curves appear to be potentially subject to 
over-smoothing error since the peak of the accelerations 
are significantly influenced by the time step.  

Any time step between 20 and 40 milliseconds yielded 
calculated peak accelerations that were significantly 
lower than those exhibited by the sensor data. Visually, 
the peaks of the sensor data appear to be influenced by 
considerable noise still present in the signals, and thus, 
it seems likely that the sensor signals in this case 
overestimate the peak accelerations. However, further 
analysis would be necessary to determine the degree to 
which the sensor signals might be overestimating the 
accelerations and, likewise, the degree to which the 
video analysis data might be underestimating the 
resultant accelerations. 

 
Figure 8 – Vehicle Resultant Accelerations 

 
Using differential calculus to perform an error analysis 
on Equations (11) and (12), it can be shown that the 
uncertainty in the accelerations can be estimated with 
the following equations: 

22 t
xax Δ

=
δδ  

22 t
zaz Δ

=
δδ  

Again assuming that the differences between the two 
analysts reported above give a reasonable estimate of 
the potential measurement errors or the uncertainty in 
the positional coordinates obtained with the camera-
matching technique, Figure 9 graphically represents 
Equations (14) and (15) for time steps varying between 
10 and 50 milliseconds. From the standpoint of the 
uncertainty, using a time step of 40 milliseconds for 
calculating the accelerations yields an uncertainty in the 
translational accelerations of approximately 0.8g, with 

(12)

(13)

(11) 

(14)

(15)
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96% confidence, and of approximately 0.57g with 84% 
confidence. 
 

 
Figure 9 – Acceleration Uncertainties 

 
Having calculated the test vehicle’s CoM accelerations in 
the earth-fixed coordinate system, equations can be 
written relating these accelerations to the forces that 
caused them. To develop these equations, again 
consider Figure 1. The following equations describe the 
motion of this vehicle through the impact depicted in this 
figure: 
 

groundgroundcg Fma =,  
 

gravityverticalverticalcg FFma −=,  
 

φφα cossin ⋅⋅−⋅⋅= rFrFI verticalgroundrollroll  
 
In these equations, m represents the vehicle’s mass, Iroll 
represents its roll moment of inertia, and αroll represents 
its roll acceleration. These equations of motion provide a 
basis for interpreting the relationship between 
accelerations recorded at the vehicle’s CoM and the 
vehicle-to-ground impact forces to which the vehicle is 
subjected during a rollover crash test. The first two 
equations of motion can be rearranged, as follows, to 
reveal this interpretation: 

 

g
a

W
F groundcgground ,=  

1, +=
g

a
W

F verticalcgvertical  

 
Thus, the vehicle’s CoM acceleration along the ground 
surface, in gravitational units, can be interpreted as the 
vehicle-to-ground impact force along the ground surface, 
normalized by the vehicle weight. The vehicle’s vertical 
CoM acceleration can be interpreted as a force that is 1g 

less than the vertical vehicle-to-ground impact force, 
normalized by the vehicle weight.  

Figures 10 and 11 show the vertical impact force applied 
to the test vehicle during this test, calculated with 
Equation (20) and utilizing the accelerations calculated 
with time steps between 20 and 40 milliseconds. The 
first of these graphs plots the vertical force with the 
progression of time and the second plots the vertical 
force with the progression of the roll. In Figure 11, 
images have been included to show the orientation of 
the vehicle at the peak of each of three main impulses. 
These three impulses are associated with the impact 
between the wheels and ground as the vehicle exits the 
dolly, the driver’s side roof-to-ground impact, and the 
passenger side A-pillar, roof rail and hood impact with 
the ground. 

 
Figure 10 – Vertical Impact Force 

 

 
Figure 11 – Vertical Impact Force 

 
The curves depicted in Figures 10 and 11 give us some 
ability to judge which time step produces the most 
accurate accelerations and forces. Physically, these 
force curves should not drop below zero, since the 
vertical impact force cannot be negative. However, both 
the 20 and 30 millisecond curves do drop significantly 
below zero over certain time intervals, and thus, they 
contain physically unrealistic values. With a time step of 

(16)

(17)

(18)

(19)

(20)
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40 milliseconds, these unrealistic negative impact force 
values are nearly eliminated. This gives one indication 
that the forces calculated with the 40 millisecond time 
interval are likely more accurate than those calculated 
with a 20 or 30 millisecond time interval. It is also likely 
an indication that the sensor accelerations of Figure 8 
are overestimating the peak accelerations since these 
accelerations are directly related to the contact forces. 
Were these sensor accelerations used to calculate 
forces, they would no doubt produce peak forces well 
above those calculated with the video analysis at a time 
step of 40 milliseconds. 

On the other hand, review of the test video appears to 
show that using a 40 millisecond time step to calculate 
the vertical impact force results in impact durations that 
are too long. For instance, for the first wheel-to-ground 
impact, the 40ms force curve indicates the impact 
occurred over the time interval from 130 to 490 
milliseconds. Review of the video reveals that this 
impact actually occurred over the interval of time from 
225 to 450 milliseconds. Thus, the 40ms force curve 
implies an impact duration of 360ms for an impact that 
actually only lasted for approximately 225 milliseconds. 
In terms of the impact duration, then, the 20 and 30 
millisecond force curves provide a better estimate of the 
overall impact durations. 

Impact duration aside, given that the 40ms curve doesn’t 
contain the physically unrealistic negative force values 
that the 20 and 30 ms curve do, the 40ms curve may still 
provide the most reasonable estimate of the peak impact 
forces. If that is the case, then the first wheel-to-ground 
impact produced a peak vertical impact force that was 
approximately 335% of the vehicle weight and both the 
driver’s side and passenger’s side roof impacts 
produced peak vertical impact forces of approximately 
270% of the vehicle weight. 

Now, consider the vehicle’s roll velocity. The following 
difference equation will yield the vehicle’s average roll 
velocity over two time steps: 

t
ttrttr

r Δ
−

= Δ−Δ+

2
,, θθ

ω  

In Equation (21), θr is the vehicle roll angle at the 
specified time step. Similar equations could be written 
for obtaining the vehicle’s pitch and yaw velocities. 

Figure 12 compares the results from Equation (21), 
calculated with time steps between 10 and 40 
milliseconds, with the roll velocity obtained from the two 
roll rate sensors on the vehicle. The sensor data shown 
in this graph was filtered with a CFC 60 filter. In general, 
the video analysis data and the sensor signals show 
excellent agreement. In fact, the discrepancies between 
the sensor data and the video analysis were less 

significant than the discrepancies between the two 
sensors themselves. Overall, the agreement between 
the video analysis and the sensor data does not appear 
significantly affected by the time step with which the roll 
velocity is calculated. 

 
Figure 12 – Vehicle Roll Velocity Curves 

 
Using differential calculus to perform an error analysis 
on Equation (21), it can be shown that the uncertainty in 
the roll velocity can be estimated with the following 
equation: 

t
r

r
Δ⋅

=
2
δθδω  

For the video analysis reported in this paper, it was 
found that when obtained by two separate analysts, the 
two set of motion data had an average difference in the 
roll angle of 0.58 degrees, with a standard deviation of 
0.40 degrees. Thus, approximately 84% of the time, the 
difference between the roll angles obtained by the two 
analysts was less than 1 degree. Assuming that this 
average difference gives a reasonable estimate of the 
potential measurement errors or the uncertainty in the 
roll angles obtained with the camera-matching 
technique, Figure 13 graphically represents Equation 
(22) for time steps varying between 10 and 50 
milliseconds. 

Since the agreement between the roll velocities obtained 
with video analysis and the sensor data does not appear 
to depend significantly on the time step used to calculate 
the roll velocity, a 40 millisecond time step again seems 
a good choice for use in the video analysis calculations. 
At this time step, the uncertainty in the calculated roll 
velocities will be around 18 degrees per second, with a 
confidence of 84%. 

(21)

(22)
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Figure 13 – Roll Velocity Uncertainties 

 
Interestingly, the changes in roll velocity exhibited by the 
roll velocity curves of Figure 12 during each impact 
occurred over time intervals that were consistent with 
what the test video showed. That being the case, the roll 
velocity curves were used in conjunction with review of 
the video to obtain the time intervals over each of the 
three main impacts occurred. Those time intervals were 
estimated to be as follows: 

Impact #1 – 225 to 450 ms (225ms duration) 
Impact #2 – 705 to 870 ms (165ms duration) 

Impact #3 – 1030 to 1200 ms (170ms duration) 
 

Having obtained these impact durations, we can now 
return to the velocity curves of Figures 6, 7 and 12 and 
determine the translational and angular velocity changes 
for each of the three impacts considered in this paper. 
This process results in the following velocity changes for 
each of these impacts: 

Impact #1 

ΔVx = -4.9 mph 
ΔVz = 6.7 mph 

Δωr = -163 deg/s 
 

Impact #2 

ΔVx = -1.1 mph 
ΔVz = 3.2 mph 
Δωr = 60 deg/s 

 
Impact #3 

ΔVx = -1.5 mph 
ΔVz = 4.2 mph 
Δωr = 125 deg/s 

 
Using differential calculus, it can be shown that the 
uncertainty in these velocity changes can be estimated 
with the following equations: 

2
,

2
, ixfxx vvV δδδ +=Δ  

2
,

2
, izfzz vvV δδδ +=Δ  

2
,

2
, irfrr δωδωωδ +=Δ  

When the calculations are carried out with a time step of 
40ms, these equations yield uncertainties of 1.0 mph in 
the ground plane and vertical CoM velocity changes and 
25 degrees per second in the change in roll velocity, with 
a confidence of approximately 84%.  

The following equation will yield the vehicle’s energy at 
any instant in time during the test: 

( )22222222

2 yypprrzyx kkkvvmE ωωω ++++⋅= −  

 
In this equation, kr, kp and ky are the vehicle’s radii of 
gyration and ωr, ωp and ωy are the angular velocities. 
Figure 14 depicts the vehicle’s kinetic energy for the first 
two seconds of the test. 
 

 
Figure 14 – Vehicle Energy 

 
Using differential calculus to perform an error analysis 
on Equation (27), it can be shown that the uncertainty in 
the vehicle’s kinetic energy can be estimated with the 
following equation: 
 

224224

2242222

yyyppp

rrrzzyxyx

kk
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mE

δωωδωω

δωωδδ
δ

+

+++
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−−
 

 
In this equation, δωr, δωp, and δωy are the angular 
velocity uncertainties.  
 
The energy loss for each of the three main impacts that 
occurred during this test can be obtained by subtracting 
the vehicle’s kinetic energy at the end of the impact from 

(27)

(25)

(26)

(28)

(24) 
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its kinetic energy at the beginning of impact. Using 
differential calculus to determine the uncertainty in these 
energy losses, the following equation is obtained: 
 

22
if EEE δδδ +=Δ  

 
In this equation, δΔE is the overall uncertainty in the 
calculated energy loss, δEf is the uncertainty in the 
vehicle’s calculated energy loss at the end of the impact, 
and δEi is the uncertainty in the vehicle’s calculated 
energy loss at the beginning of the impact. 
 
Given the impact time intervals reported above, the data 
of Figure 14 can be used to obtain the following energy 
losses for each of the three main impacts: 
 

ΔE1 = 35,775 ft-lbs ± 8,219 ft-lbs (27.0% ± 6.2%) 
 

ΔE2 = 8,957 ft-lbs ± 7,262 ft-lbs (9.8% ± 7.9%) 
 

ΔE3 = 13,749 ft-lbs ± 6,932 ft-lbs (16.0% ± 8.1%) 
 
The uncertainties reported with these energy losses 
have a confidence of approximately 84%. These 
uncertainties are rather significant relative to the best 
estimate values. Clearly, considerable uncertainty has 
accrued through the course of these calculations. 

ANALYZING THE IMPACTS 

Our primary goal in the research reported in this paper 
was to determine the degree to which a simple, planar, 
impulse-momentum impact model would accurately yield 
the translational and rotational velocity changes and the 
energy loss for the three impacts identified above. The 
previous section has described the actual dynamics 
associated with each of those impacts. In this section, 
the impact model introduced earlier is used to analyze 
these three impacts. 

In analyzing each impact, the initial velocity conditions 
were obtained from the analysis of the previous section. 
These initial velocity conditions for each impact were as 
follows: 

Impact #1 

vx-y,i = 29.5 mph 
vz,i = -3.4  mph 
ωr,i = -62 deg/s 

 
Impact #2 

vx-y,i = 24.0 mph 
vz,i = -2.3 mph 
ωr,i = -225 deg/s 

 

Impact #3 

vx-y,i = 23.3 mph 
vz,i = -2.4 mph 
ωr,i = -175 deg/s 

 
In addition to the initial velocity conditions, the impact 
model equations also call for the vehicle’s radius of 
gyration about the roll axis, the impact angle and radius, 
and the coefficient of restitution and impulse ratio. To 
estimate the radius of gyration for the vehicle in the 
subject crash test, the vehicle weight was measured 
prior to running the crash test and the radius of gyration 
was estimated based on the equations reported in 
References 1 and 13. 

The impact angle and impact radius for each impact 
were obtained by first selecting a vehicle position and 
orientation that might best represent the “average” 
vehicle position and orientation during the impact. Then 
the contact point was placed in a location within the 
deformation region that might best represent the point 
where the resultant collision force was applied to the 
vehicle. The impact angle and impact radius was then 
measured. 

It was, of course, not apparent what vehicle position and 
orientation and what contact point location would best 
represent each impact. That being the case, the authors 
took six impact angle and impact radius measurements 
for each impact. These measurements were obtained 
from three vehicle positions per impact – the vehicle 
position at first contact with the ground, the vehicle 
position at the time of the maximum vertical impact 
force, and the vehicle position at the time of separation 
from the ground. For each of these times, impact angle 
and radius measurements were taken at the leading and 
trailing edges of the contact region. Taking these six 
measurements allowed us to establish a range of 
possible impact angle and radius measurements. 
Ultimately, it was found that taking the impact angle and 
radius measurements at the time of the peak vertical 
impact force made the most physical sense and resulted 
in the best results from the impact model. That being the 
case, the authors established ranges for the impact 
angle and radii by measuring to the leading and trailing 
edges of the contact region at the time of this peak 
impact force.  

Figures 15 through 17 are frames from the high-speed 
video of the test that visually depict one of the impact 
radius and impact angle values for each of the impacts. 
The angles and distances in these images are not to 
scale and are simply intended to help the reader 
envision how these parameters would be measured. 

(29)
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Figure 15 – Impact Angle and Radius for Impact #1 

 
Figure 16 – Impact Angle and Radius for Impact #2 

 
Figure 17 – Impact Angle and Radius for Impact #3 

Having established a range for the impact angle and 
radius for each impact, these parameters can be varied 
within those ranges to obtain the best match between 
the video analysis and the impact model results. To 
simplify this process of obtaining the best match, a new 
parameter, Δyc, was introduced into Equations (1) 
through (3) to allow for easy iteration of the contact point 
location. To see the meaning and function of this 
parameter, consider Figure 18. 

 
Figure 18 

 
In this figure, ri and φi are an initial estimate of the impact 
radius and impact angle. The distance yc is the distance 
separating a point on the ground directly below the CoM 
from the point of collision force transfer. The parameter 
Δyc represents a change in this distance, yc. Equations 
(30) and (31) below relate the initial impact angle and 
radius to a new impact angle and radius, φf and rf, 
through the parameter Δyc. 
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Thus, the location of the point of collision force transfer 
could be easily iterated to obtain the best match 
between the video analysis and impact model results by 
simply changing the parameter Δyc. For this optimization 
process, the values of the impact angle and radius 
obtained with Equations (30) and (31) would be fed into 
Equations (1) through (3). When iterating in this manner, 
the analyst should, of course, ensure that the optimized 
values of the impact angle and radius fall within their 
respective ranges. 

Once the contact point for each impact has been 
defined, the coefficient of restitution for that impact could 
theoretically be obtained with two different methods. The 
first method would involve using the video analysis data 
to measure the vertical velocity of the contact point at 
the beginning and the end of the impact and from these 
to calculate the coefficient of restitution. The second 
method would involve selecting a representative vehicle 

(30)

(31)
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orientation for the impact – in this case, the vehicle 
orientation at the time of the peak vertical force – and 
then imposing the assumption that the vehicle 
orientation does not change during the impact and then 
calculating the coefficient of restitution based on the 
initial and final vertical velocities, the initial and final roll 
velocities, and the impact angle and impact radius. 

To understand the difference between these two 
methods, consider that the coefficient of restitution is 
defined as the negative ratio of the post-impact to the 
pre-impact vertical velocity at the point where the 
resultant collision force is transferred. Since the point of 
collision force transfer will lie near the perimeter of the 
vehicle, both the vehicle’s roll velocity and roll orientation 
can significantly influence to the vertical velocity at Point 
C at any instant in time. The vehicle’s orientation will 
determine what component of the vehicle’s perimeter 
velocity contributes to the vertical velocity at C and in 
which direction it contributes. The influence of these 
factors is displayed mathematically in Equation (4). 

Now, consider that the impact model equations 
described above assumed that the vehicle does not 
move during the impact (instantaneous impact). In 
reality, even given the relatively short impact durations 
associated with the impacts considered in this paper, the 
vehicle traverses a relatively significant roll angle during 
these impacts. Specifically, in the specific test under 
consideration here, the vehicle traversed a roll angle of 
approximately 31 degrees during the first impact, 31-½ 
degrees during the second impact, and 21 degrees 
during the third impact. 

If one uses the first method for calculating the coefficient 
of restitution, then the vertical velocity of the contact 
point at the beginning and the end of the impact will be 
measured with the impact radius at different angles. This 
difference is caused by the fact that the vehicle 
continues to roll throughout the impact. If one uses the 
second method for calculating the coefficient of 
restitution, then the vertical velocity of the contact point 
at the beginning and end of the impact will be calculated 
with the impact radius at a constant angle (its angle at 
the time of the peak force). Thus, the first method yields 
a coefficient of restitution that may cause inaccuracies in 
the impact model since it violates the instantaneous 
impact assumption of the model. The second method is 
more consistent with the modeling assumptions, but it 
yields a value for the coefficient of restitution that does 
not reflect the fact that the vehicle rolls throughout the 
impact. This second way of treating the coefficient of 
restitution is also most consistent with the way that it has 
typically been obtained for use with other planar, 
impulse-momentum impact models [18]. 

As it turns out, this discussion is, for now, destined to 
remain a theoretical one since actually calculating the 
coefficient of restitution for the impacts of this crash test 

results in too much uncertainty for the values to be of 
any use. To see this, recall that the coefficient of 
restitution is defined as follows: 
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In this equation, vzc,f is the final vertical velocity at the 
point of collision force transfer and vzc,i is the initial 
vertical velocity at the point of collision force transfer. 
Using differential calculus, it can be shown that, for the 
second method of obtaining the coefficient of restitution, 
the uncertainty in the calculated value of the coefficient 
can be estimated with the following equation: 
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Equation (33) includes only the uncertainties that arise in 
the coefficient of restitution due to uncertainties in the 
initial and final translational and angular vehicle 
velocities. It ignores uncertainties associated with the 
impact radius and angle (though these uncertainties 
certainly exist). Still, when a coefficient of restitution and 
a certainty range is calculated for Impact #1, the result is 
excessive uncertainty, as follows: 

e1 = 0.264 ± 0.852 (± 323%) 

This uncertainty range is wide enough that the value of 
the coefficient of restitution could actually lie anywhere 
within the physically possible range between 0.0 and 
1.0. Given such significant uncertainty, calculated 
coefficients of restitution will not be useful to our 
analysis. That being the case, in the analysis reported 
here, the coefficient of restitution was used as another 
optimizing parameter to obtain the best fit between the 
impact model and video analysis results. 

In addition to the coefficient of restitution, the impact 
model equations also utilize the impulse ratio as an input 
parameter. A calculated value of the impulse ratio can 
be obtained for each impact with Equation (2). Using this 
equation, the following calculated values were obtained 
for the impulse ratios associated with each of the three 
impacts considered in this paper: 

μ1 = -0.421 

μ2 = -0.161 

μ3 = -0.189 

Though we have not undertaken this analysis here, one 
would expect that these values may also be subject to 

(32)

(33)
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considerable uncertainty. That being the case, in the 
analysis reported below, the authors began by setting 
the impulse ratio at these calculated values but then 
changed it as necessary to obtain the best fit solution for 
the video analysis results. As it turned out, for Impacts 1 
and 3, these calculated values did yield the best-fit 
solution. 

Based on the results of this section and the previous 
one, Table 1 summarizes the relevant parameter values 
for each impact. This table includes the 84% confidence 
certainty ranges for a number of these parameters. 

 Impact #1 
(Driver’s Side Wheels) 

Impact #2 
(Driver’s Side Roof) 

Impact #3 
(Passenger’s Side Roof) 

Vehicle Weight(lbs) 4494 
Radius of Gyration (ft) 2.12 

Initial Ground Plane Velocity (mph) 29.5 ± 0.7 24.0 ± 0.7 23.3 ± 0.7 
Initial Vertical Velocity (mph) -3.4 ± 0.7 -2.3 ± 0.7 -2.4 ± 0.7 
Initial Roll Velocity (deg/s) -62 ± 18 -225 ± 18 -175 ± 18 

Ground Plane Velocity Change (mph) -4.9 ± 1.0 -1.1 ± 1.0 -1.5 ± 1.0 
Vertical Velocity Change (mph) 6.7 ± 1 3.2 ± 1 4.2 ± 1 
Change in Roll Velocity (deg/s) -163 ± 25 60 ± 25 125 ± 25 

Impact Angle (deg) 88 to 109 88 to 112 68 to 117 
Impact Radius (ft) 36.3 to 37.9 42.0 to 45.0 40.6 to 43.5 
Impact Times (ms) 225 to 450 705 to 870 1030 to 1200 

Impact Duration (ms) 225 165 170 
Time @ Peak Vertical Force (ms) 330 770 1130 

Impact Energy Loss (ft-lbs) 35,775 ± 8,219 8,957 ± 7,262 13,749 ± 6,932 
Impact Energy Loss (%) 27.0 ± 6.2 9.8 ± 7.9 16.0 ± 8.1 

TABLE 1 
 

RESULTS 

Equations (1) through (5) were used to calculate 
translational and rotational velocity changes and an 
energy loss for each of the three vehicle-to-ground 
impacts discussed in this paper. These calculations were 
optimized to obtain the best fit with the video analysis 
data by varying the impact angle, impact radius, 
coefficient of restitution and the impulse. The results of 
these calculations are reported in Table 2. In this table, 
the magnitude of the over or underestimation of the 
actual value is listed in parenthesis. As a comparison 
between Tables 1 and 2 demonstrates, the impact model 

results showed excellent agreement with the mean 
values from the video analysis. For the first two impacts, 
the best fit with the video analysis was obtained by 
placing the impact center near the geometric center of 
the deformation regions. For the third impact, the best fit 
was obtained by placing the impact center near the 
leading edge of the deformation region. For the first and 
third impacts, the calculated impulse ratios did yield the 
impact model solution that was the best fit to the video 
analysis data. In the case of the second impact, the 
optimized impulse ratio was lower in magnitude than the 
calculated impulse ratio. This second impact was also 
the case that exhibited the greatest divergence from the 
velocity changes obtained from the video analysis. 

 

 Impact #1 
(Driver’s Side Wheels) 

Impact #2 
(Driver’s Side Roof) 

Impact #3 
(Passenger’s Side Roof) 

Vertical Velocity Change (mph) 6.7 (+0.0) 4.0 (+0.8) 4.2 (+0.0) 
Ground Plane Velocity Change (mph) -4.9 (+0.0) -1.0 (+0.1) -1.5 (+0.0) 

Change in Roll Velocity (mph) -162 (+1) 55 (-5) 125 (+0.0) 
Energy Loss (ft-lb) 35,389 (-386) 9,166 (+217) 13,220 (-529) 
Energy Loss (%)    

Coefficient of Restitution 0.480 0.000 0.170 
Impulse Ratio -0.421 -0.125 -0.189 

TABLE 2 
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DISCUSSION 
 
Impact Model Assumptions 
 
Now, consider the impact model results of Table 2 in 
relationship to the impact model assumptions. Based on 
the results of Table 2, it can be concluded that any 
violation of the impact model assumptions did not 
significantly degrade the accuracy of the impact model 
calculations. That result is encouraging and indicates 
that the simple planar impact model used here can offer 
insight into rollover dynamics. That said, it still makes 
sense to be specific about the degree to which certain 
impact model assumptions were violated and how those 
violations were dealt with in the modeling. It is, perhaps, 
obvious that there will be cases where violations of the 
impact model assumptions will be more significant that 
what was observed in this test and that, in such cases, 
the impact model used here will not be useful. 
 
Impacts #1 and #2 nearly satisfied the first impact model 
assumption, which was that the impact occurred entirely 
in a single plane. At the time of these impacts, the 
vehicle had experienced very little pitching or yawing 
and the vehicle velocity was still in line with its initial 
direction. By the time of Impact #3, the vehicle had 
developed a relatively significant forward pitch angle with 
a corresponding forward pitch velocity. Thus, strictly 
speaking, Impact #3 did violate the planar impact 
assumption. Despite this, the impact model results for 
Impact #3 still showed excellent agreement with the 
video analysis results. Thus, this violation of the planar 
impact assumption was not fatal to the accuracy of the 
model. 
 
All three impacts violated the second assumption of the 
impact model, which was that the vehicle experienced 
no change in position during the impact. As was stated 
above, the vehicle traversed a roll angle of 
approximately 31 degrees during the first impact, 31-½ 
degrees during the second impact, and 21 degrees 
during the third impact. Overcoming this discrepancy 
between the impact model assumption and the real 
impacts appeared to be primarily a matter of determining 
a vehicle position that was the most representative of the 
impact. In the case of these three impacts, the vehicle 
position at the peak vertical force yielded the best impact 
model results. 
 
Clearly, the third assumption of the impact model, that 
the impact force was applied at a single point would be 
violated for any real-world impact. Still, overcoming this 
discrepancy appeared to be primarily a matter of 
determining a contact point location that was most 
representative of the point of application of the resultant 
collision force. As we have already stated, for the first 
two impacts, the best fit was obtained with the video 
analysis data by placing the point of collision force 
transfer near the geometric center of the deformation 

region. For the third impact, the best results were 
obtained by placing the impact center near the leading 
edge of the contact region. 
 
It is unclear to us at this point whether the fourth 
assumption, that no moment arose at the point of 
collision force transfer, was violated or not. Further 
research could explore the influence of a moment at the 
contact point on the resulting rollover dynamics. At any 
rate, ignoring such a moment did not adversely affect the 
impact results to any significant degree. 
 
The fifth impact model assumption, that no velocity 
reversal occurs during the impact, was satisfied for each 
of the three impacts that were analyzed in this paper. 
This was determined by reviewing the crash test video. 
 
The Larger Context 
 
A number of studies that have sought causes of 
occupant injuries in rollovers have focused on crash 
attributes or outcomes – the number of quarter rolls [12], 
the initial vehicle translational speed [15], and the 
magnitude of roof deformation [10] or post-crash 
headroom [16] – and on how those attributes correlate to 
injury rates. However, crash attributes and outcomes are 
not causes. In fact, they are effects that result from a 
combination of the rollover initial conditions and the 
particular forces to which the vehicle is subjected during 
the rollover. It is these initial conditions and underlying 
forces that cause certain crash attributes or outcomes to 
be present. If there is a correlation between certain injury 
types and a particular crash attribute, it is the underlying 
forces that cause this crash attribute that could also 
relate to the actual cause of that injury type. Thus, an 
understanding of the initial conditions and underlying 
forces causing certain crash attributes may be significant 
to reducing injury potential in rollovers.  
 
In theory, an impact model such as the one used in this 
paper could be helpful in understanding the underlying 
forces and physical relationships that cause certain 
rollover crash attributes. The impact model used in this 
paper is simple enough that parameter relationships are 
not obscured. The equations of the impact model are 
algebraic, and so, their solution need not be buried 
within computer code. If one could have confidence that 
this relatively simple impact model would yield physically 
realistic and accurate results, then one could 
conceivable use it to develop an understanding of why 
certain crash conditions lead to certain crash attributes.  
 
That, ultimately, has been the goal of the research 
reported here: to determine whether this simple, planar 
impact model would yield accurate, and therefore useful, 
results for the vehicle-to-ground impact that occur during 
rollovers. The results reported above are encouraging in 
this regard. These results suggest that the impact model 
is capable of yielding accurate results related to the 
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velocity changes and energy loss resulting from a 
vehicle-to-ground impact. That being the case, it is 
reasonable to use this impact model to examine the 
influence of various factors on rollover dynamics.  
 
For instance, it can be observed that the rate at which a 
rolling vehicle decelerates will be determined by the 
accumulation of the ground plane velocity changes that 
occur during the rollover. Thus, any factor that influences 
the ground surface velocity changes will also likely 
influence the deceleration rate that the vehicle 
experiences. These factors include the following: (1) the 
available surface friction, (2) the ground speeds, vertical 
velocities, and roll velocities experienced during the roll, 
(3) the orientations of the specific vehicle-to-ground 
impacts that occur during the roll, (4) the vehicle 
geometry, (5) and the stiffness of the vehicle structures 
engaged during the roll. Future research could examine 
rollover test data and real-world rollovers to determine 
the degree to which each of these factors might affect a 
rolling vehicle’s deceleration rate over the course of an 
entire rollover. 
 
CONCLUSIONS 
 
• For all three vehicle-to-ground impacts considered in 

this study, the impact model results for the velocity 
changes and energy loss fell within the certainty 
ranges obtained from the video analysis for these 
parameters. 

 
• These results suggest that the impact model is 

capable of yielding accurate results related to the 
velocity changes and energy loss resulting from a 
vehicle-to-ground impact. That being the case, it is 
reasonable to use this impact model to examine the 
influence of various factors on rollover dynamics. 
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APPENDIX A 
 
This appendix presents the derivations of Equations (1) 
through (3) which yield the translational and rotational 
velocity changes for the idealized vehicle-to-ground 
impact shown in Figure A1. 
 

 
Figure A1 

The development of these equations largely follows the 
development of the planar impact equations presented in 
References 3 and 4, with the exception that a gravity 
impulse is included. 
 
The principle of impulse and momentum dictates the 
following equalities: 
 

gzzizf PPmvmv −=−  

 

yyiyf Pmvmv =−  

( ) φφωω crPsrPmk zyirfrr ⋅⋅−⋅⋅=− ,,
2  

 
In Equations (A1) through (A3), m is the vehicle mass, kr 
is the vehicle’s radius of gyration for the roll axis, r is the 
distance between the vehicle’s CoM and the point at 
which the impact force is applied (Point C), φ is the angle 
between the orientation of the ground plane and the line 
connecting the CoM to Point C, Pz and Py are the normal 
(vertical) and tangential (ground plane) impulse 
components that result from the impact and Pg is the 
gravity impulse. Translational velocity components are 
denoted with the letter v and final and initial velocities 
are denoted with the subscripts f and i. 

 
The following constraint equations govern the impact 
energy loss along the normal and tangential directions: 
 

irzi

frzf

crv
crv

e
,

,

ωφ
ωφ
⋅⋅−

⋅⋅−
−=  

 

z

y

P
P

=μ  

 
In Equations (A4), e is the coefficient of restitution for the 
impact, which is defined as the negative ratio of the post-
impact to pre-impact vertical velocities at the point of 
collision force transfer (Point C). In Equation (A5), μ is 
the impulse ratio, which establishes the magnitude of the 
tangential impulse relative to the magnitude of the 
normal impulse. This equation yields Equation (2) in the 
main body of this paper when Equations (A1) and (A2) 
are substituted into it. 
 
Substituting Equation (A5) into (A3) yields the following 
equation: 
 

( ) ( )φφμωω csrPkm zirfrr −⋅⋅⋅=−⋅⋅ ,,
2  

 
Then, the following equation results from substituting 
Equation (A1) into (A6): 
 

( ) ( )φφμω csrPVmkm gzrr −⋅⋅⋅+Δ=Δ⋅⋅ 2  

 
The gravity impulse can be rewritten with the following 
equation, which can then be substituted into Equation 
(A7) to yield Equation (A9): 
 

ig tmgP Δ⋅=  

 
( ) ( )φφμω csrtmgVmkm izrr −⋅⋅⋅Δ+Δ=Δ⋅⋅ 2  

 
In Equation (A8), g is the gravitational constant and Δti is 
the impact duration. Algebraic manipulation of Equation 

(A1)

(A2)

(A3)

(A4)

(A5)

(A8)

(A6)

(A7)

(A9)



 19 

(A9) yields Equation (A10), which is equivalent to 
Equation (3) in the main body of this paper. 
 

( ) ( )
2

,,

r
iz

irfrr

k
csrtgV φφμ

ωωω

−⋅⋅
⋅Δ⋅+Δ

=−=Δ
 

 
Now, algebraically manipulate Equation (A4) to solve for 
the final roll velocity: 
 

( )irzizffr crv
cr
ev

cr ,,
1 ωφ

φφ
ω ⋅⋅−

⋅
+

⋅
=  

 
Now, equate Equations (A10) and (A11) through the final 
roll velocity and algebraically manipulate to obtain the 
following equation: 
 

( ) ( )
( )
( )⎭⎬

⎫

⎩
⎨
⎧

⋅⋅−+
⋅⋅−

⋅Δ⋅−

⎭
⎬
⎫

⎩
⎨
⎧

⋅⋅−+
⋅⋅+−=Δ

φφμφ
φφμφ

φφμφ
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r
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,1
 

 
Equation (A12) is equivalent to Equation (1) in the main 
body of this paper.  
 

(A10)

(A11)

(A12)


